کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
783381 1465314 2016 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An unconstrained mathematical description for conduction heat transfer problems with linear temperature-dependent thermal conductivity
ترجمه فارسی عنوان
یک توصیف ریاضی بدون محدودیت برای مشکلات انتقال گرما هدایت با هدایت حرارتی وابسته به دما
کلمات کلیدی
انتقال حرارت غیر خطی، توصیف ریاضی بدون محدودیت، هدایت گرما وابسته به دما، تحول کرچوف
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی


• A systematic procedure for describing heat transfer with temperature dependent conductivity.
• Existence and uniqueness of the Kirchhoff transformation always ensured.
• An unconstrained mathematical representation that always ensures physical sense.
• A general closed form formula for the inverse of the Kirchhoff transformation.
• An associate convex and coercive functional which admits one and only one minimum.

This work presents a systematic modeling for conduction heat transfer problems in which the thermal conductivity is assumed a linear function of the temperature. In general, the mathematical descriptions arising from a linear relationship between thermal conductivity and temperature give rise to more than one solution, some of them without physical sense. In this work a convenient mathematical representation is proposed, avoiding physically inadmissible solutions.A conduction heat transfer problem in which the thermal conductivity decreases linearly with the temperature in a given interval is considered in this work. A physically equivalent alternative form, valid for any absolute temperature is proposed, giving rise to an unrestricted mathematical modeling and circumventing the need of a posterior choice for establishing the solution with physical meaning.An equivalent minimum principle for the problem is presented, showing that the extremum of a proposed functional corresponds to the solution of the problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Non-Linear Mechanics - Volume 81, May 2016, Pages 310–315
نویسندگان
, , ,