کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
784927 | 1465352 | 2012 | 7 صفحه PDF | دانلود رایگان |

This study introduces a non-linear finite element analysis approach to the procedure of modeling hybrid laminate composite shells with embedded shape memory alloy (SMA) wire subjected to coupled structural and thermal loading. Numerical analyses of SMA wire reinforced composite laminates were carried out by synergizing the non-linear laminate shell element with Brison's model of the SMA constitutive law. To verify the proposed procedure, the present illustrative applications involve rectangular laminated panels clamped along one side. Analysis results were compared with corresponding experimental results from a prior study. Several test cases that depend on the volume fraction of SMA, temperature, and ply angles are presented to illustrate the highly entangled thermo-mechanical behavior of shape memory alloy hybrid composites (SMAHCs). The results of the numerical analysis show the ability of the suggested procedure to compute the thermo-mechanical behavior of a SMAHC in accordance with the SMA's internal phase transformations induced by stress and temperature variation and demonstrate very good agreement with experimental results.
► A Numerical analysis model with respect to SMAHC is initially developed.
► Its effectiveness is verified through the comparison with experimental data.
► FEA formulation enables SMAHC analysis subjected to thermo-mechanical loading.
Journal: International Journal of Non-Linear Mechanics - Volume 47, Issue 6, July 2012, Pages 672–678