کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
785527 1465311 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The secular equation for non-principal Rayleigh waves in deformed incompressible doubly fiber-reinforced nonlinearly elastic solids
ترجمه فارسی عنوان
معادله سکولار برای امواج غیر ریلی امری در حالت جامد غیرخطی الاستیک تقویت شده با دوام فیبر ناپایدار
کلمات کلیدی
امواج ریلی، معادلات سکولار صریح و ضمنی، نیمه فضایی ارتوتروپیک، تقویت فیبر
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی


• Explicit and implicit secular equations for the speed of a Rayleigh wave in a pre-stressed, anisotropic half-space are obtained.
• The anisotropy is associated with two preferred directions, thereby modeling the effect of two families of fiber reinforcement.
• Results are illustrated with numerical examples.
• The wave speed depends strongly on the anisotropic character of the material model.

The explicit and implicit secular equations for the speed of a (surface) Rayleigh wave propagating in a pre-stressed, doubly fiber-reinforced incompressible nonlinearly elastic half-space are obtained. Hence, the anisotropy is associated with two preferred directions, thereby modelling the effect of two families of fiber reinforcement. One of the principal planes of the primary pure homogeneous strain coincides with the free surface while the surface wave is not restricted to propagate in a principal direction. Results are illustrated with numerical examples. In particular, an isotropic material reinforced with two families of fibers is considered. Each family of fibers is characterized by defining a privileged direction. Furthermore, the fibers of each family are located throughout the half space and run parallel to each other and perpendicular to the depth direction, i.e. the free surface is a plane of symmetry of the anisotropy. The wave speed depends strongly on the anisotropic character of the material model as well as the direction of propagation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Non-Linear Mechanics - Volume 84, September 2016, Pages 23–30
نویسندگان
, , ,