کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7890583 | 1509883 | 2016 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
One-step amino-functionalization of milled carbon fibre for enhancement of thermo-physical properties of epoxy composites
ترجمه فارسی عنوان
یک عامل آمینواسازی یکپارچه از فیبر کربن خرد شده برای افزایش خواص حرارتی فیزیکی کامپوزیت اپوکسی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
سرامیک و کامپوزیت
چکیده انگلیسی
Development of new chemical approaches for preparation of engineered carbon-based fillers is critical for high-performance applications. Herein, an efficient method for covalent functionalization of polyacrylonitrile-based carbon fibre through azo radical addition under mild condition is demonstrated. In this way, isobutyronitrile radicals in situ produced from thermal decomposition of 2,2â²-azobisisobutyronitrile (AIBN), were covalently grafted on milled carbon fibre (MCF) surface, assisted by microwave irradiation, as evidenced by FTIR, Raman, and TGA analysis. The grafted isobutyronitriles on MCF surface (n-MCF) were applied for further MCF amino-functionalization (a-MCF) via nucleophilic reaction of an amine-rich compound. Then, both pure MCF and a-MCF were incorporated into epoxy matrix; and its curing process and thermo-physical properties were investigated using DSC, rheometry, DMA, TGA, and flexural analysis. The Tg and flexural strength of epoxy/a-MCF composites, compared to epoxy/MCF, increased by â¼3.5% and â¼10.2%, resulting from good adhesion between a-MCF and epoxy matrix which confirmed by SEM observations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Composites Part A: Applied Science and Manufacturing - Volume 88, September 2016, Pages 243-252
Journal: Composites Part A: Applied Science and Manufacturing - Volume 88, September 2016, Pages 243-252
نویسندگان
Omid Zabihi, Mojtaba Ahmadi, Sajjad Shafei, Seyed Mohsen Seraji, Azam Oroumei, Minoo Naebe,