کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
790535 | 1466459 | 2010 | 8 صفحه PDF | دانلود رایگان |

Active Magnetic Regeneration (AMR) is a configuration that allows magnetic refrigeration to be suitable also for room temperature applications. This work is intended to detect, by means of a 1-D numerical model, the influence on the regenerator performances of the working condition ambient temperature (TCURIE ± 20 K) and of the operating parameters fluid mass flow rate (utilization factor 0.5÷3.5) and cycle frequency (0.1÷0.6 Hz). Simulations show that, tuning the fluid mass flow rate, a gadolinium AMR (395 g, f = 0.25 Hz, ΔB = 1.7 T) can reach a maximum cooling capacity of 130 W and a 40 W cooling power over a temperature span of 30 K. A COP of 5 can also be achieved with a temperature span of 30 K and a cooling power of 35 W. Frequency has a weak influence on the AMR's COP, while the ambient temperature is crucial. The system loses the 60% of cooling capacity if the ambient temperature is 20 K away from the material Curie temperature.
Journal: International Journal of Refrigeration - Volume 33, Issue 2, March 2010, Pages 286–293