کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
791524 901966 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Development of empirical model for different process parameters during rotary electrical discharge machining of copper–steel (EN-8) system
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله
Development of empirical model for different process parameters during rotary electrical discharge machining of copper–steel (EN-8) system
چکیده انگلیسی

The present work investigates the machining characteristics of EN-8 steel with copper as a tool electrode during rotary electrical discharge machining process. The empirical models for prediction of output parameters have been developed using linear regression analysis by applying logarithmic data transformation of non-linear equation. Three independent input parameters of the model viz. peak current, pulse on time and rotational speed of tool electrode are chosen as variables for evaluating the output parameters such as metal removal rate (MRR), electrode wear ratio (EWR) and surface roughness (SR). Analysis of the results, by using Taguchi's recommended signal–noise ratio formulae and ANOVA, has been conducted to identify the significant parameters and their degree of contribution in the process output. Analyzed results shows that peak current and pulse on time are the most significant and significant parameters for MRR and EWR, respectively. But peak current and electrode rotation become the most significant and significant parameters for SR, respectively. Experimental results further revealed that maximizing the MRR while minimizing EWR and improving the surface roughness, cannot be achieved simultaneously at a particular combination of control parameters setting. In addition, the predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Materials Processing Technology - Volume 209, Issue 3, 1 February 2009, Pages 1454–1465
نویسندگان
, , , ,