| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 7935057 | 1513047 | 2018 | 6 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												The orientation and optical properties of inverted-pyramid-like structures on multi-crystalline silicon textured by Cu-assisted chemical etching
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی انرژی
													انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												An effective low-cost texturing method based on the Cu-assisted chemical etching (CACE) technique was adopted to thoroughly texture diamond wire sawn (DWS) multi-crystalline silicon (mc-Si) wafers to form inverted-pyramid-like (IPL) structures on different grains. A mathematical model was first established to confirm the orientation of the IPL structures on grains ã1â¯1â¯0ã, grains ã1â¯1â¯2ãâ¯and grains ã1â¯1â¯3ã; this confirmation enables one to deeply understand the CACE process for mc-Si. In addition, the optical properties of IPL structures on different grains were investigated. We reveal that the IPL texture reduces the wafer reflectance to a much lower level of 22.4% and 4.4% before and after SiNx deposition, respectively. Due to the lower reflectance, the average cell efficiency for IPL textured wafers is as high as 19.03%, which is 0.52% absolute higher than that for wafers textured using HF/HNO3 mixture solutions. This CACE technique paves new insight to promote the industrial application of DWS mc-Si solar cells.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Solar Energy - Volume 171, 1 September 2018, Pages 675-680
											Journal: Solar Energy - Volume 171, 1 September 2018, Pages 675-680
نویسندگان
												Juntao Wu, Yaoping Liu, Quansheng Chen, Wei Chen, Lixia Yang, Yan Wang, Meiliang He, Xiaolong Du,