کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7935279 | 1513051 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
3D simulations of interdigitated back-contacted crystalline silicon solar cells on thin substrates
ترجمه فارسی عنوان
شبیه سازی سه بعدی از سلول های خورشیدی سیلیکون بلور بر روی پایه های نازک بافت های متناوب
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Interdigitated back contact technology is a promising candidate to be applied to thin crystalline silicon solar cells because of its simpler one-side interconnection while allowing a more flexible front surface treatment. This work explores the efficiency potential of IBC c-Si solar cells applied to thin c-Si substrates through 3D device simulations. In particular, we explore the impact of substrate thickness and front surface recombination velocity on cell performance with special attention to the different behavior in carrier collection of two different rear-surface doping structures. Firstly, the model is validated by comparing simulation results to a fabricated device on 280â¯Âµm-thick substrates with stripe-like p+ and n+ diffusions. It is revealed that efficiencies of 16-17% are reachable for substrates on the 10-15â¯Âµm range without changing the technology developed for thick ones. Next, the rear doping structure is modified leading to doped regions just under the metal contacts. This type of structure is expected in solar cells where high-temperature diffusions are replaced by point-like laser doped contacts, which is a feasible alternative to be applied to thin substrates. Simulation results show that diffusion length requirements for those locally-doped structures are more demanding due to the reduction of emitter regions. As a result, very well passivated front and rear surfaces are required to maintain short-circuit current densities to reasonable values. Finally, for both structures open-circuit voltage is kept almost constant with reduced thickness, despite the strong reduction in short-circuit current. Simulations show a reduction of dark saturation current density with substrate thinning due to the redistribution of dark current densities that flow parallel to the device surface.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Solar Energy - Volume 167, June 2018, Pages 242-250
Journal: Solar Energy - Volume 167, June 2018, Pages 242-250
نویسندگان
Chen Jin, Isidro MartÃn, Pablo R. Ortega, Eric Calle, Ramon Alcubilla,