کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7935287 1513052 2018 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solar output power forecast using an ensemble framework with neural predictors and Bayesian adaptive combination
ترجمه فارسی عنوان
پیش بینی قدرت خروجی خورشیدی با استفاده از یک چارچوب گروهی با پیش بینی های عصبی و ترکیب سازگاری بیزی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
An Accurate forecast of PV output power is essential to optimize the relationship between energy supply and demand. However, it is a challenging task due to the intermittent nature of solar PV output and the effect of number of meteorological variables on it. In this paper, a multivariate neural network (NN) ensemble forecast framework is proposed. First multiple neural predictors are trained with input data from meteorological variables and then accurate predictors are combined with a Bayesian model averaging (BMA) technique. To identify the best performing framework, three different NN ensemble networks are created, namely feedforward neural network (FNN), Elman backpropagation network (ELM) and cascade-forward backpropagation (NewCF) network and trained with three different training techniques. The real time recorded solar PV data along with meteorological variables of the University of Queensland's solar facility from 2014 to 2015 is used. To validate the forecast framework, one day ahead (24 h) forecasts are selected for different seasons. The results show that the proposed ensemble framework substantially improves the forecast accuracy of PV power output as compared benchmark methods, particularly for short term forecasting horizons.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Solar Energy - Volume 166, 15 May 2018, Pages 226-241
نویسندگان
, , ,