کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
794003 1467155 2007 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dislocation nucleation from bicrystal interfaces and grain boundary ledges: Relationship to nanocrystalline deformation
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Dislocation nucleation from bicrystal interfaces and grain boundary ledges: Relationship to nanocrystalline deformation
چکیده انگلیسی

Molecular dynamics simulations are used to evaluate the primary interface dislocation sources and to estimate both the free enthalpy of activation and the critical emission stress associated with the interfacial dislocation emission mechanism. Simulations are performed on copper to study tensile failure of a planar Σ5 {2 1 0} 53.1° interface and an interface with the same misorientation that contains a ledge. Simulations reveal that grain boundary ledges are more favorable as dislocation sources than planar regions of the interface and that their role is not limited to that of simple dislocation donors. The parameters extracted from the simulations are utilized in a two-phase composite mesoscopic model for nanocrystalline deformation that includes the effects of both dislocation emission and dislocation absorption mechanisms. A self-consistent approach based on the Eshelby solution for grains as ellipsoidal inclusions is augmented by introduction of stress concentration in the constitutive law of the matrix phase to account for more realistic grain boundary effects. Model simulations suggest that stress concentration is required in the standard continuum theory to activate the coupled grain boundary dislocation emission and absorption mechanisms when activation energy of the dislocation source is determined from atomistic calculation on grain boundaries without consideration of impurities or other extrinsic defects.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanics and Physics of Solids - Volume 55, Issue 11, November 2007, Pages 2300–2327
نویسندگان
, , , , , ,