کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
794403 902485 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spectrographic analysis for the modal testing of nonlinear aeroelastic systems
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Spectrographic analysis for the modal testing of nonlinear aeroelastic systems
چکیده انگلیسی

The spectrograph is a signal-processing tool often used for the frequency domain analysis of time-varying signals. When the signal to be analyzed is a function of time, the spectrograph represents the frequency content of the signal as a sequence of power spectra that change with time. In this paper, the usefulness of the technique is demonstrated in its application to the analysis of the time history response of a nonlinear aeroelastic system. The aeroelastic system is modelled analytically as a two-dimensional, rigid airfoil section free to move in both the bending and pitching directions and possessing a rigid flap. The airfoil is mounted by torsional and translational springs attached at the elastic axis, and the flap is used to provide the forcing input to the system. The nonlinear system is obtained by introducing a freeplay type of nonlinearity in the pitch degree-of-freedom restoring moment. The airfoil is immersed in an aerodynamic flow environment, modelled using incompressible thin airfoil theory for unsteady oscillatory motion. The equations of motion are solved using a fourth-order Runge–Kutta numerical integration technique to provide time-history solutions of the response of the airfoil in the pitch and plunge directions. Time-histories are obtained for the nonlinear responses of the linear and nonlinear aeroelastic systems to a sine-sweep input. The time-histories are analyzed using the spectrographic technique, and the frequency content of the response is plotted directly as a function of the input frequency. Results show that the combination of the sine-sweep input with the spectrographic analysis permits a unique insight into the behavior of the nonlinear system with a minimum of testing. It is shown that the frequency of the nonlinear system response is a function of the input frequency and one other characteristic frequency that can be associated with the limit cycle oscillations of the same nonlinear system subject to a transient input.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Fluids and Structures - Volume 24, Issue 5, July 2008, Pages 720–731
نویسندگان
, ,