کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7952060 | 1513707 | 2018 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hall-Petch relationship in Mg alloys: A review
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
شیمی مواد
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Grain refinement could effectively enhance yield strength of Mg alloys according to the well-known Hall-Petch theory. For decades, many studies have been devoted to the factors influencing the Hall-Petch slope (k) in Mg alloys. Understanding the factors influencing k and their mechanisms could offer guidance to design and produce high-strength Mg alloys through effective grain refinement hardening. A review and comments of the past work on the factors influencing k in Mg alloys are presented. Results of these previous investigations demonstrate that the value of k in Mg alloys varies with texture, grain size, temperature and stain. The influence of texture and grain size on k is found to be an essential result of the variation of deformation mode on k value. Without the variation of deformation modes, it is revealed that texture could also impose a significant effect on k and this is also summarized and discussed in this paper. The reason for texture effect on k is analyzed based on the mechanism of Hall-Petch relationship. In addition, it is found in face-centered cubic (fcc) or body-centered cubic (bcc) metals that boundary parameters (boundary coherence, boundary energy and boundary diffusivity) could strengthen twinning or slips to a different extent. Therefore, the role of boundary parameters is also extended into the k values in Mg alloys and discussed in this paper. In the end, we discuss the future research perspective of Hall-Petch relationship in Mg alloys.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Materials Science & Technology - Volume 34, Issue 2, February 2018, Pages 248-256
Journal: Journal of Materials Science & Technology - Volume 34, Issue 2, February 2018, Pages 248-256
نویسندگان
Huihui Yu, Yunchang Xin, Maoyin Wang, Qing Liu,