کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
796546 | 1467066 | 2015 | 16 صفحه PDF | دانلود رایگان |
Transfer printing is an important and versatile tool for deterministic assembly and integration of micro/nanomaterials on unusual substrates, with promising applications in fabrication of stretchable and flexible electronics. The shape memory polymers (SMP) with triangular surface relief structures are introduced to achieve large, reversible adhesion, thereby with potential applications in temperature-controlled transfer printing. An analytic model is established, and it identifies two mechanisms to increase the adhesion: (1) transition of contact mode from the triangular to trapezoidal configurations, and (2) explicit enhancement in the contact area. The surface relief structures are optimized to achieve reversible adhesion and transfer printing. The theoretical model and results presented can be exploited as design guidelines for future applications of SMP in reversible adhesion and stretchable electronics.
Journal: Journal of the Mechanics and Physics of Solids - Volume 77, April 2015, Pages 27–42