کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7969253 1514347 2018 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Resolving the geometrically necessary dislocation content in severely deformed aluminum by transmission Kikuchi diffraction
ترجمه فارسی عنوان
حل مسئله اختلال ژئومتریکی لازم در آلومینیوم به شدت تغییر شکل داده شده توسط انتقال کیکوچی پراش
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد دانش مواد (عمومی)
چکیده انگلیسی
In this paper, severe plastic deformation (SPD) is applied to commercially pure aluminum. Monotonic high pressure torsion (HPT) processing is employed at room temperature, and the microstructure of samples deformed up to an equivalent strain of 50 is investigated by electron backscatter diffraction (EBSD). The distribution pattern and the density of geometrically necessary dislocations (GNDs) are evaluated by examination of transmission Kikuchi diffraction (TKD) maps. Three different methodologies are utilized for assessment of the GND density. It was observed that two distinct stages of grain fragmentation and steady-state occur during processing. During the first stage, a severe grain refinement was observed as the average grain size decreased from ~85 μm to ~1 μm at an equivalent strain of 10. Quantification of the density of dislocations in both deformation regimes showed that, independent of the choice of model, the GND density is greater in the fragmentation stage than in the steady-state stage. This observation was linked with the prevalence of the continuous dynamic recrystallization (CDRX) phenomenon in each stage. Furthermore, a significant presence of GNDs in the steady-state stage was characterized. Formation of microstructure, grain refinement and saturation of grain size are discussed in the light of statistics of GNDs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Characterization - Volume 140, June 2018, Pages 225-232
نویسندگان
, , , ,