کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7971776 | 1514613 | 2018 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
High-temperature low-cycle fatigue behavior of a 9Cr-ODS steel: Part 2 - hold time influence, microstructural evolution and damage characteristics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
دانش مواد (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Creep-fatigue (CF) interaction in a tempered martensitic Fe-9%Cr-based oxide dispersion strengthened (ODS) steel was studied at 650â¯Â°C by introducing hold-time of up to 30â¯min at peak tensile strain of 0.7%. The symmetrical loops under pure fatigue/continuous cycling (PF/CC) became asymmetrical due to stress relaxation during hold-time. Moreover, this also resulted in a reduction of cyclic life. For the investigated hold-time durations, the increase in tensile hold (TH) period had a negligible effect on peak stresses, but led to a further reduction in lifetime. Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used to visualize microstructural evolution under both PF/CC and TH waveforms. In general, PF/CC resulted in: (1) rearrangement and/or annihilation of dislocations, (2) partial elimination of the original sub-grain structures, (3) grain growth, (4) M23C6 carbides coarsening and (5) Cr-W enriched Laves phase precipitation. Nevertheless, upon introducing tensile hold-time, no substantial additional microstructural changes were identified. To uncover reasons for specimens premature failure under TH waveforms, detailed investigations on their surfaces, cross-sections and fracture surfaces were carried out. These investigations led to two important conclusions. Firstly, due to comparatively longer high-temperature exposure, the extent of oxidation increased upon introducing TH which expedited damage progression. Secondly, TH induced intergranular damage in the form of creep cavities does not only provide additional crack initiation sites but also their growth/coalescence under tensile stresses act as a bridging link for accelerated crack propagation. These two findings are associated with a reduction of cyclic life due to introduction of hold-time. Hence, the effect of hold-times is primarily due to (1) oxidation-fatigue interaction and (2) creep-fatigue interaction.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Science and Engineering: A - Volume 730, 11 July 2018, Pages 197-206
Journal: Materials Science and Engineering: A - Volume 730, 11 July 2018, Pages 197-206
نویسندگان
Ankur Chauhan, Jan Hoffmann, Dimitri Litvinov, Jarir Aktaa,