کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
797192 1467048 2016 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exterior statistics based boundary conditions for representative volume elements of elastic composites
ترجمه فارسی عنوان
شرایط اضطراری بر اساس شرایط مرزی برای عناصر نماینده حجمی کامپوزیتهای الاستیک
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی

Statistically equivalent representative volume elements or SERVEs are representations of the microstructure that are used for micromechanical simulations to generate homogenized material constitutive responses and properties (Swaminathan et al., 2006a and Ghosh, 2011). Typically, a SERVE is generated from the parent microstructure as a statistically equivalent region, whose size is determined from the requirements of convergence of macroscopic properties. Standard boundary conditions, such as affine transformation-based displacement boundary conditions (ATDBCs), uniform traction boundary conditions (UTBCs) or periodic boundary conditions (PBCs) are conventionally applied on the SERVE boundary for micromechanical simulations. However, when the microstructure is characterized by arbitrary, nonuniform distributions of heterogeneities, these simple boundary conditions do not represent the effect of regions exterior to the SERVE. Improper boundary conditions can result in significantly larger than optimal SERVE domains, needed for converged properties. In an attempt to overcome the limitations of the conventional boundary conditions on the SERVE, this paper explores the effect of boundary conditions that incorporate the statistics of the exterior region on the SERVE of elastic composites. Using Green's function based interaction kernels, coupled with statistical functions of the microstructural characteristics like one-point and two-point correlation functions, a novel exterior statistics-based boundary condition or ESBC is derived for the SERVE. The advantages of the ESBC are established by comparing with results of simulations using conventional boundary conditions. Results of the SERVE simulations subjected to ESBCs are also compared with those from other popular methods like statistical volume element (SVE) and weighted statistical volume element (WSVE). The proposed ESBCs offer significant advantages over other methods in the SERVE-based analysis of heterogeneous materials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanics and Physics of Solids - Volume 95, October 2016, Pages 1–24
نویسندگان
, ,