کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
798156 1467110 2011 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The bimodal theory of plasticity: A form-invariant generalisation
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
The bimodal theory of plasticity: A form-invariant generalisation
چکیده انگلیسی

The bimodal plasticity model of fibre-reinforced materials is currently available and applicable only in association with thin-walled fibrous composites containing a family of straight fibres which are conveniently assumed parallel with the x1-axis of an appropriately chosen Cartesian co-ordinate system. Based on reliable experimental evidence, the model suggests that plastic slip in the composite operates in two distinct modes; the so-called matrix dominated mode (MDM) which depends on a matrix yield stress, and the fibre dominated mode (FDM) which depends also on the fibre yield stress. Each mode is activated by different states of applied stress, has its own yield surface (or surfaces) in the stress space and has its own segment on the overall yield surface of the composite. This paper employs theory of tensor representations and produces a form-invariant generalisation of both modes of the model. This generalisation furnishes the model with direct applicability to relevant plasticity problems, regardless of the shape of the fibres or the orientation of the co-ordinate system. It thus provides a proper mathematical foundation that underpins important physical concepts associated with the model while it also elucidates several technical relevant issues. A most interesting of those issues is the revelation that activation of the MDM plastic regime is possible only if the applied stress state allows the fibres to act like they are practically inextensible. Moreover, activation of the more dominant, between the two MDM plastic slip branches is possible only if conditions of material incompressibility hold, in addition to the implied condition of fibre inextensibility. A direct mathematical connection is thus achieved between basic, experimentally verified concepts of the bimodal plasticity model and a relevant mathematical model originated earlier from the theory of ideal fibre-reinforced materials. An additional issue of discussion involves the number of independent yield stress parameters that the bimodal theory needs to take into consideration. Moreover, an analytical expression is provided of a relatively simple mathematical surface that possesses all known features of the FDM yield surface; currently captured with the aid of both experimental and computational means. The present study is guided by the existing relevant experimental evidence which, however, is principally associated with the plastic behaviour of solids reinforced by strong fibres. Nevertheless, several of the outlined developments are expected to be applicable to composite materials containing a single family of more compliant or even weak fibres.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanics and Physics of Solids - Volume 59, Issue 8, August 2011, Pages 1576–1595
نویسندگان
,