کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
801057 | 904055 | 2006 | 14 صفحه PDF | دانلود رایگان |

In this paper, the dynamics of a system of two van der Pol oscillators with delayed position and velocity coupling is studied by the method of averaging together with truncation of Taylor expansions. According to the slow-flow equations, the dynamics of 1:1 internal resonance is more complex than that of non-1:1 internal resonance. For 1:1 internal resonance, the stability and the number of periodic solutions vary with different time delay for given coupling coefficients. The condition necessary for saddle-node and Hopf bifurcations for symmetric modes, namely in-phase and out-of-phase modes, are determined. The numerical results, obtained from direct integration of the original equation, are found to be in good agreement with analytical predictions.
Journal: Mechanics Research Communications - Volume 33, Issue 5, September–October 2006, Pages 614–627