کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
801155 1467690 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Topological derivative for an anisotropic and heterogeneous heat diffusion problem
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Topological derivative for an anisotropic and heterogeneous heat diffusion problem
چکیده انگلیسی

The topological derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation. According to the literature, the topological derivative has been fully developed for a wide range of physical phenomenon modeled by partial differential equations, considering homogeneous and isotropic constitutive behavior. In fact, only a few works dealing with heterogeneous and anisotropic material behavior can be found in the literature, and, in general, the derived formulas are given in an abstract form. In this work, we derive the topological derivative in its closed form for the total potential energy associated to an anisotropic and heterogeneous heat diffusion problem, when a small circular inclusion of the same nature of the bulk phase is introduced at an arbitrary point of the domain. In addition, we provide a full mathematical justification for the derived formula and develop precise estimates for the remainders of the topological asymptotic expansion. Finally, the influence of the heterogeneity and anisotropy are shown through some numerical examples of heat conductor topology optimization.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanics Research Communications - Volume 46, December 2012, Pages 26–33
نویسندگان
, ,