کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
803735 | 904752 | 2006 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Numerical study of the parametric evolution of bifurcations in the three-dimensional ring problem of N bodies
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study the dynamics of a massless particle in an annular configuration of N bodies, N â 1 of which have equal masses m and are located in equal distances on a fictitious circle and one has mass βm and is located at the center of the circle. Our interest is focused on the bifurcation points from planar to three-dimensional families of symmetric periodic orbits in the above problem. We study numerically the evolution of these bifurcation points with respect to the variation of the mass parameter β. In particular we investigate the continuous evolution of bifurcation points for values of β from 2 up to 1000. The two distinct cases of the system's behavior at β = 2 and 1000 are examined comparatively and various conclusions are drawn regarding the overall dynamical evolution of the three-dimensional system as the relative mass of the central body grows.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanics Research Communications - Volume 33, Issue 6, NovemberâDecember 2006, Pages 830-836
Journal: Mechanics Research Communications - Volume 33, Issue 6, NovemberâDecember 2006, Pages 830-836
نویسندگان
K.G. Hadjifotinou, T.J. Kalvouridis, M. Gousidou-Koutita,