کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
804443 1467843 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Flexure-based dynamic-tunable five-axis nanopositioner for parallel nanomanufacturing
ترجمه فارسی عنوان
نانوذرات پنج محور پویا مبتنی بر انعطاف پذیر برای تولید همزمان موازی
کلمات کلیدی
مکانیسم مطابقت، تنظیم پویا، نانوذرات چند محور نانومواد موازی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی صنعتی و تولید
چکیده انگلیسی


• We present a flexure-based dynamic-tunable five-axis nanopositioner for tip-based nanofabrication application.
• The nanopositioner achieves ±100 nm, ±100 nm, ±10 nm, ±1 μrad and ±1 μrad precision in the X, Y, Z, θX, and θY axis with a work volume of 10 mm × 10 mm × 80 μm.
• Static dynamic-tuning results show the natural frequency of the X–Y stage can be increased by 2–3 times.
• Active dynamic tuning can further improve the dynamic performance, i.e., reducing the overshoot and settling time from 487 nm/1.5 s to 256 nm/0.5 s.
• Nano-scratching experiments were performed to fabricate optical gratings on gold coated silicon substrates over a 5 × 1 mm2 area within 15 min.

With the increasing demand for devices and systems with nanometer precision in the modern manufacturing industry, tip-based nanofabrication (TBN) has become an indispensable part of manufacturing process. However, a common issue that needs to be addressed is to increase the throughput of TBN, which is sequential and inherently slow. To overcome the difficulty, in this paper we present the design and control of a flexure-based five-axis nanopositioner with dynamic-tuning capability for parallel nanomanufacturing applications. The dynamic-tuning method enables trade-offs between the range and speed of the nanopositioner so as to increase the throughput of the nanomanufacturing system. The experimental results indicate that the nanopositioner conforms with the in-plane range and resolution requirements, i.e., ±5 mm/100 nm in X/Y axis, while its natural frequencies in X/Y axis can be increased by two to three times at the expense of decreased stroke, i.e., elastic range. In addition, real-time dynamic-tuning experiments show active vibration cancellation techniques can be implemented on the nanopositioner and effectively eliminate the unwanted dynamics and improve the overall dynamic performance. Lastly, we performed nano-scratching experiments using an 18 tip AFM array to fabricate optical grating patterns on gold coated silicon substrates of 5 × 1 mm2 to demonstrate the practicality of the new method. The experiment confirmed good parallelism had been achieved during the experiments, where the scratched gold lines have a consistent depth of ∼160 nm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Precision Engineering - Volume 45, July 2016, Pages 423–434
نویسندگان
, , ,