کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8048114 | 1519232 | 2016 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
State of health monitoring in machining: Extended Kalman filter for tool wear assessment in turning of IN718 hard-to-machine alloy
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An extended Kalman filter (EKF) is employed in this work for tracking tool flank wear area in wet-turning of Inconel 718 (IN718) nickel-based alloy in variable feed condition. The tool wear area evolution is modeled with a 3rd order polynomial empirical function and an analytical solution for discrete state space system is derived. The state uncertainty was found to decrease up to a critical range of 200-250 μm of average flank wear length, and then increase abruptly with an increase in tool wear. Therefore, the tool wear uncertainty was modeled with failure probability density, i.e. the bathtub function, while a constant uncertainty was considered for the measurement signal (spindle power). To demonstrate the significance of using this method, the root mean square error (RMSE) and the mean absolute error (MAE) were calculated and compared with deterministic method in estimation of the tool wear area. It was shown that the proposed estimation based on stochastic filter EKF increased the accuracy of estimation by maximum of 60%. Results for estimation of the rate of tool wear area indicate additional possible effects or transitions of effects at higher wear conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Manufacturing Processes - Volume 24, Part 2, October 2016, Pages 361-369
Journal: Journal of Manufacturing Processes - Volume 24, Part 2, October 2016, Pages 361-369
نویسندگان
Farbod Akhavan Niaki, Martin Michel, Laine Mears,