کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8053975 | 1519434 | 2018 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
New non-traveling wave solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The (Gâ²âG)-expansion approach is an efficient and well-developed approach to solve nonlinear partial differential equations. In this paper, the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation is investigated by using this approach, which describes the (2+1)-dimensional interaction of the Riemann wave propagated along the y-axis with a long wave propagated along the x-axis and can be considered as a model for the incompressible fluid. With the aid of symbolic computation, a family of exact solutions are obtained in forms of the hyperbolic functions and the trigonometric functions. When the parameters are selected special values, non-traveling wave solutions are also presented, and these gained solutions have abundant structures. The figures corresponding to these solutions are illustrated to show the particular localized excitations and the interactions between two solitary waves.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics Letters - Volume 79, May 2018, Pages 162-168
Journal: Applied Mathematics Letters - Volume 79, May 2018, Pages 162-168
نویسندگان
Jian-Guo Liu, Yu Tian, Jian-Guo Hu,