کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8058749 | 1520087 | 2015 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fault detection and isolation for a small CMG-based satellite: A fuzzy Q-learning approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی هوافضا
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The model-based fault detection and isolation (FDI) methods are used to detect faults in small satellites when actuator redundancy may not be feasible due to weight, cost, and space limitations. In this paper, fuzzy logic and Q-learning are combined for FDI for small control momentum gyroscope (CMG)-based satellites. The fuzzy logic is good in handling the nonlinear structures of CMG, while the Q-learning provides online learning capabilities. Fuzzy logic, which is based on residual analysis, will be used to find faults in CMGs. Using residuals, fuzzy inference systems develop rules based on membership functions. However, optimization problems arise in fuzzy logic. To overcome this drawback, the Q-learning will be used to compensate for it; that is, by using Q-learning, we can obtain optimal rules in fuzzy inference systems. To achieve these goals, hierarchical dynamics and motor faults will be considered for the generation of residuals, which involves the processing of a large amount of information. The validity of the proposed fuzzy Q-learning-based FDI is demonstrated through simulations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Aerospace Science and Technology - Volume 47, December 2015, Pages 340-355
Journal: Aerospace Science and Technology - Volume 47, December 2015, Pages 340-355
نویسندگان
Young-Cheol Choi, Ji-Hwan Son, Hyo-Sung Ahn,