کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
806141 905269 2008 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multiple predictor smoothing methods for sensitivity analysis: Example results
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Multiple predictor smoothing methods for sensitivity analysis: Example results
چکیده انگلیسی

The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described in the first part of this presentation: (i) locally weighted regression (LOESS), (ii) additive models, (iii) projection pursuit regression, and (iv) recursive partitioning regression. In this, the second and concluding part of the presentation, the indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Reliability Engineering & System Safety - Volume 93, Issue 1, January 2008, Pages 55–77
نویسندگان
, ,