کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
806304 1468242 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Bayesian method for using simulator data to enhance human error probabilities assigned by existing HRA methods
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
A Bayesian method for using simulator data to enhance human error probabilities assigned by existing HRA methods
چکیده انگلیسی

In the past several years, several international organizations have begun to collect data on human performance in nuclear power plant simulators. The data collected provide a valuable opportunity to improve human reliability analysis (HRA), but these improvements will not be realized without implementation of Bayesian methods. Bayesian methods are widely used to incorporate sparse data into models in many parts of probabilistic risk assessment (PRA), but Bayesian methods have not been adopted by the HRA community. In this paper, we provide a Bayesian methodology to formally use simulator data to refine the human error probabilities (HEPs) assigned by existing HRA methods. We demonstrate the methodology with a case study, wherein we use simulator data from the Halden Reactor Project to update the probability assignments from the SPAR-H method. The case study demonstrates the ability to use performance data, even sparse data, to improve existing HRA methods. Furthermore, this paper also serves as a demonstration of the value of Bayesian methods to improve the technical basis of HRA.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Reliability Engineering & System Safety - Volume 128, August 2014, Pages 32–40
نویسندگان
, , ,