کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
807595 | 905567 | 2009 | 4 صفحه PDF | دانلود رایگان |

Laminated fiber-reinforced composite stiffened plate with [0/90/±45]S plies made of S-Glass/epoxy are evaluated via computational simulation to study damage and fracture progression. The loads are pressure and temperature which varies from 21 to 65.5 °C (case I) and from 143.3 to 21 °C (case II). An integrated computer code is used for the simulation of the damage progression. Results show that damage initiation begins at low load level, with matrix cracking at the 0° (bottom and top) plies, fiber fracture at the bottom (0°) ply and interply delamination at the top (0°) ply. Increasing the applied pressure, the damage growth is expended resulting in fracture through the thickness of the structure. At this stage, 90% of the plies damage at applied pressure 15.306 MPa for the case I and 15.036 MPa for the case II. After this stage, the cracks propagate rapidly and the structure collapses.
Journal: Theoretical and Applied Fracture Mechanics - Volume 51, Issue 2, April 2009, Pages 144–147