کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
808138 905676 2009 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analyzing the effect of introducing a kurtosis parameter in Gaussian Bayesian networks
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Analyzing the effect of introducing a kurtosis parameter in Gaussian Bayesian networks
چکیده انگلیسی

Gaussian Bayesian networks are graphical models that represent the dependence structure of a multivariate normal random variable with a directed acyclic graph (DAG). In Gaussian Bayesian networks the output is usually the conditional distribution of some unknown variables of interest given a set of evidential nodes whose values are known. The problem of uncertainty about the assumption of normality is very common in applications. Thus a sensitivity analysis of the non-normality effect in our conclusions could be necessary. The aspect of non-normality to be considered is the tail behavior. In this line, the multivariate exponential power distribution is a family depending on a kurtosis parameter that goes from a leptokurtic to a platykurtic distribution with the normal as a mesokurtic distribution. Therefore a more general model can be considered using the multivariate exponential power distribution to describe the joint distribution of a Bayesian network, with a kurtosis parameter reflecting deviations from the normal distribution. The sensitivity of the conclusions to this perturbation is analyzed using the Kullback–Leibler divergence measure that provides an interesting formula to evaluate the effect.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Reliability Engineering & System Safety - Volume 94, Issue 5, May 2009, Pages 922–926
نویسندگان
, ,