کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8084483 | 1521734 | 2018 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Development of an efficient tightly coupled method for multiphysics reactor transient analysis
ترجمه فارسی عنوان
توسعه یک روش کارآمد و محکم برای تجزیه و تحلیل گذار راکتور چند فازی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
بیش از حد حل، چند فیزیک، تکرار پیکارد،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
مهندسی انرژی و فناوری های برق
چکیده انگلیسی
Picard Iteration is a widely used coupling method for multiphysics simulations. This method allows one to directly leverage existing and well-developed single-physics programs without re-writing large portions of the codes. In Picard Iteration, single-physics codes just iteratively pass solutions to each other as inputs until each code has reached a converged solution. However, multiphysics computation linked by Picard Iteration is susceptible to over-solving, which can make the overall computation much less efficient. Over-solving means that each single-physics code provides an accurate solution in each Picard Iteration, which is not necessary in practice. Solving the single-physics codes in an inexact manner, i.e. with relaxed termination criteria, can help avoid this problem. This work develops a modified Picard Iteration coupling method with adaptive, inexact termination criteria for the underlying single-physics codes. Also, nested within the inexact Picard Iteration, inexact Newton methods were applied in the single-physics codes. The effect on the overall computation efficiency due to the inexact (relaxed) termination criteria at both levels is investigated by applying them to solve reactor transient problems. A reactor dynamics problem with temperature feedback in one-dimensional slab geometry is used to scope the behavior of nested inexact solvers. Then these methods are applied to a larger two-dimensional Boiling Water Reactor (BWR) problem. Computational time savings reach 55% for the two-dimensional problem. Additionally, applying an inexact termination criterion (inexact Newton method) to each single-physics code results in a further time savings of up to 18%.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Progress in Nuclear Energy - Volume 103, March 2018, Pages 33-44
Journal: Progress in Nuclear Energy - Volume 103, March 2018, Pages 33-44
نویسندگان
Jaron P. Senecal, Wei Ji,