کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8084975 1521748 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A numerical study of isotropic and anisotropic ablation in MCCI by MPS method
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
A numerical study of isotropic and anisotropic ablation in MCCI by MPS method
چکیده انگلیسی
Anisotropic and isotropic ablation in molten corium-concrete interaction (MCCI) phenomenon was studied with the Moving Particle Semi-implicit (MPS) method by carrying out numerical simulations of CCI-2 and 3 experiments. The interaction of the fully oxidized PWR core melts with specially-designed two-dimensional limestone and siliceous concrete test sections was analyzed, focusing on investigating the two-dimensional ablation behavior with both limestone and siliceous concrete. The phase transition of molten corium and concrete was modeled based on a phase transition model for mixture. Slag film model and crust dissolution models were incorporated in the current MPS code to simulate the effect of gas generation and crust dissolution phenomena in limestone concrete. The effects of gas generation and aggregates on the concrete ablation behavior were investigated by simulating different specially designed cases. The simulation results by MPS method reproduced the isotropic and anisotropic cavity ablation profile and the overall axial and lateral ablation rates agreed well with the experimental measures. The experimental and MPS results both indicate that the crust on the corium-concrete interface can play an important part in concrete ablation process. The simulation results by MPS method also provide evidence to support the theory that aggregates are part of the cause of anisotropic ablation profile in cavity with siliceous concrete because aggregates could delay the axial basemat ablation more significantly than the lateral one and influence the power split in the melt pool.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Progress in Nuclear Energy - Volume 90, July 2016, Pages 46-57
نویسندگان
, ,