کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
808511 1468272 2006 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sensitivity estimations for Bayesian inference models solved by MCMC methods
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Sensitivity estimations for Bayesian inference models solved by MCMC methods
چکیده انگلیسی

The advent of Markov Chain Monte Carlo (MCMC) methods to simulate posterior distributions has virtually revolutionized the practice of Bayesian statistics. Unfortunately, sensitivity analysis in MCMC methods is a difficult task. In this paper, a computationally low-cost method to estimate local parametric sensitivities in Bayesian models is proposed. The sensitivity measure considered here is the gradient vector of a posterior quantity with respect to the parameter. The gradient vector components are estimated by using a result based on the integral/derivative interchange. The MCMC simulations used to estimate the posterior quantity can be re-used to estimate the sensitivity measures and their errors, avoiding the need for further sampling. The proposed method is easy to apply in practice as it is shown with an illustrative example.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Reliability Engineering & System Safety - Volume 91, Issues 10–11, October–November 2006, Pages 1310–1314
نویسندگان
, , ,