کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
811251 1469139 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mechanical properties, anisotropic swelling behaviours and structures of jellyfish mesogloea
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
پیش نمایش صفحه اول مقاله
Mechanical properties, anisotropic swelling behaviours and structures of jellyfish mesogloea
چکیده انگلیسی

Learning from nature is a promising way for designing and fabricating new materials with special properties. As the first step, we need to understand the structures and properties of the natural materials. In this work, we paid attention to the mesogloea of an edible jellyfish (Rhopilema esculenta Kishinouye) and mainly focused on its structure, mechanical and swelling properties. Scanning electron microscope (SEM) investigations show that jellyfish mesogloea has a well-developed anisotropic microstructure, which consists of nano-sized membranes connected with many fibres. The tensile and compressive properties of swollen and dried jellyfish mesogloea samples are measured. The jellyfish mesogloea displays very high tensile strength (0.17 MPa) and compressive strength (1.43 MPa) even with 99 wt % water. The mechanical properties of jellyfish mesogloea exceed most synthetic hydrogels with similar or even lower water contents. Swelling in acidic and basic buffer solutions weakens the mechanical properties of jellyfish mesogloea. The dried jellyfish mesogloea has very high tensile strength and modulus, which are very similar to those of synthetic plastics. The swelling properties of jellyfish mesogloea in solutions with different pH values were studied. The jellyfish mesogloea exhibits pH-sensitive and anisotropic swelling properties. The jellyfish mesogloea swells (expands) in height but deswells (shrinks) in length and width, without significant change in the volume. This phenomenon has never been reported for synthetic hydrogels. This study may provide gel scientists new ideas in designing and fabricating hydrogels with well-defined microstructures and unique mechanical and swelling properties.

Figure optionsDownload high-quality image (139 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanical Behavior of Biomedical Materials - Volume 6, February 2012, Pages 63–73
نویسندگان
, , , ,