کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
811573 1469160 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The biomechanics of arterial elastin
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
پیش نمایش صفحه اول مقاله
The biomechanics of arterial elastin
چکیده انگلیسی

Uniaxial mechanical experiments have shown that a neo-Hookean/Gaussian model is suitable to describe the mechanics of arterial elastin networks [Gundiah, N., Ratcliffe, M.B., Pruitt, L.A., 2007. Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests. J. Biomech. 40, 586–594]. Based on the three-dimensional elastin architecture in arteries, we have proposed an orthotropic material symmetry for arterial elastin consisting of two orthogonally oriented and symmetrically placed families of mechanically equivalent fibers. In this study, we use these results to describe the strain energy function for arterial elastin, with dependence on a reduced subclass of invariants, as W=W(I1,I4)W=W(I1,I4). We use previously published equations for this dependence [Humphrey, J.D., Strumpf, R.K., Yin, F.C.P., 1990a. Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Eng. 112, 333–339], in combination with a theoretical guided Rivlin–Saunders framework [Rivlin, R.S., Saunders, D.W., 1951. Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Phil. Trans. R. Soc. A 243, 251–288] and biaxial mechanical experiments, to obtain the form of this dependence. Using mechanical equivalence of elastin in the circumferential and longitudinal directions, we add a term in I6I6 to WW that is similar to the form in I4I4. We propose a semi-empirical model for arterial elastin given by W=c0(I1−3)+c1(I4−1)2+c2(I6−1)2W=c0(I1−3)+c1(I4−1)2+c2(I6−1)2, where c0c0, c1c1 and c3c3 are unknown coefficients. We used the Levenberg–Marquardt algorithm to fit theoretically calculated and experimentally determined stresses from equibiaxial experiments on autoclaved elastin tissues and obtain c0=73.96±22.51kPa, c1=1.18±1.79kPa and c2=0.8±1.26kPa. Thus, the entropic contribution to the strain energy function, represented by c0c0, is a dominant feature of elastin mechanics. Because there are no significant differences in the coefficients corresponding to invariants I4I4 and I6I6, we surmise that there is an equal distribution of fibers in the circumferential and axial directions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanical Behavior of Biomedical Materials - Volume 2, Issue 3, July 2009, Pages 288–296
نویسندگان
, , ,