کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8127710 1522961 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Accurate estimation of CO2 adsorption on activated carbon with multi-layer feed-forward neural network (MLFNN) algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
پیش نمایش صفحه اول مقاله
Accurate estimation of CO2 adsorption on activated carbon with multi-layer feed-forward neural network (MLFNN) algorithm
چکیده انگلیسی
In this study, experimental results are presented for the adsorption equilibria of carbon dioxide on activated carbon. The adsorption equilibrium data for carbon dioxide were predicted with two commonly used isotherm models in order to compare with multi-layer feed-forward neural network (MLFNN) algorithm for a wide range of partial pressure. As a result, the ANN-based algorithm shows much better efficiency and accuracy than the Sips and Langmuir isotherms. In addition, the applicability of the Sips and Langmuir models are limited to isothermal conditions, even though the ANN-based algorithm is not restricted to the constant temperature condition. Consequently, it is proved that MLFNN algorithm is a promising model for calculation of CO2 adsorption density on activated carbon.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Egyptian Journal of Petroleum - Volume 27, Issue 1, March 2018, Pages 65-73
نویسندگان
, , , , ,