کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8127710 | 1522961 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Accurate estimation of CO2 adsorption on activated carbon with multi-layer feed-forward neural network (MLFNN) algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this study, experimental results are presented for the adsorption equilibria of carbon dioxide on activated carbon. The adsorption equilibrium data for carbon dioxide were predicted with two commonly used isotherm models in order to compare with multi-layer feed-forward neural network (MLFNN) algorithm for a wide range of partial pressure. As a result, the ANN-based algorithm shows much better efficiency and accuracy than the Sips and Langmuir isotherms. In addition, the applicability of the Sips and Langmuir models are limited to isothermal conditions, even though the ANN-based algorithm is not restricted to the constant temperature condition. Consequently, it is proved that MLFNN algorithm is a promising model for calculation of CO2 adsorption density on activated carbon.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Egyptian Journal of Petroleum - Volume 27, Issue 1, March 2018, Pages 65-73
Journal: Egyptian Journal of Petroleum - Volume 27, Issue 1, March 2018, Pages 65-73
نویسندگان
Alireza Rostami, Mohammad Amin Anbaz, Hamid Reza Erfani Gahrooei, Milad Arabloo, Alireza Bahadori,