کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8129804 1523178 2019 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Damage localization method for plates based on the time reversal of the mode-converted Lamb waves
ترجمه فارسی عنوان
روش محلی سازی آسیب برای صفحات بر اساس زمان معکوس امواج لگن تبدیل شده به حالت
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم آکوستیک و فرا صوت
چکیده انگلیسی
A damage localization method based on the time reversal focusing of the mode-converted scattered Lamb wave is proposed for plate structures with a non-symmetric defect in the thickness direction. Dual transducers are attached symmetrically on the upper and lower surfaces of the plate to selectively emit and receive the lowest-order symmetric (S0) and antisymmetric (A0) modes. The localization of damage is achieved by the numerical time-reversed (TR) simulation of the mode-converted Lamb wave generated at the defect. To investigate the validity of the proposed method, the signals of the Lamb waves in a plate with a partial-thickness notch are numerically simulated by the three-dimensional elastodynamic finite integration technique (EFIT). When the S0 mode is emitted in the damaged plate, not only the S0 mode is scattered but also the A0 mode is generated due to mode conversion at the notch. Similar mode conversion behavior is confirmed when the A0 mode is emitted. The time reversal of the mode-converted scattered Lamb waves creates focused spots at the damage location without using baseline data for the undamaged plate. The proposed method reduces the magnitude of the artifacts compared to the time reversal of the non-mode-converted Lamb wave, and yields the focused spot whose size is associated with the size of the notch and the half wavelength of the time-reversed wave mode. Furthermore, the proposed method is applied to a plate with a notch-type defect adjacent to an a priori known through-thickness hole, demonstrating the damage localization in a relatively complicated structure.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ultrasonics - Volume 91, January 2019, Pages 19-29
نویسندگان
, , ,