کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8145551 1524094 2018 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive fusion framework of infrared and visual image using saliency detection and improved dual-channel PCNN in the LNSST domain
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک اتمی و مولکولی و اپتیک
پیش نمایش صفحه اول مقاله
Adaptive fusion framework of infrared and visual image using saliency detection and improved dual-channel PCNN in the LNSST domain
چکیده انگلیسی
This paper presents an adaptive fusion framework of infrared and visual images using saliency detection and an improved dual-channel pulse-coupled neural network (ID-PCNN) in the local non-subsampled shearlet transform (LNSST) domain. The first step is to use the LNSST, an upgrade of the non-subsampled shearlet transform, for multi-scale analysis to separate the source images into low-pass and high-pass sub-images. The final fusion effect is determined by the fusion rule of the low-pass component. Thus, an improved algorithm based on frequency-tuned saliency extraction is adopted to guide the adaptive weighted fusion of the low-pass sub-image. An ID-PCNN model is used as the fusion rule for high-pass sub-images. A sum of directional gradients acts as the linking strength to characterize the texture details of an image. A modified spatial frequency that reflects the gradient features of images is used to motivate neurons. A series of images from diverse scenes is used for fusion experiments. Fusion results are evaluated subjectively and objectively. The results show that our algorithm exhibits superior fusion performance and is more effective than typical fusion techniques.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Infrared Physics & Technology - Volume 92, August 2018, Pages 30-43
نویسندگان
, , ,