کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8159710 | 1524990 | 2018 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Step adaptive fast iterative shrinkage thresholding algorithm for compressively sampled MR imaging reconstruction
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک ماده چگال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In order to accelerate magnetic resonance imaging (MRI) scanning, fast MRI technique based on compressed sensing (CS) was proposed. The shrinkage thresholding algorithm (STA) is an efficient method in related algorithms to decrease the incoherent artifacts produced by the undersampling in k-space directly. The traditional STA uses the fixed iteration step size during the reconstruction progress, and it is not conducive to accelerate the convergence speed. In order to improve global iteration efficiency, in this paper, step adaptive fast iterative shrinkage thresholding algorithm (SAFISTA) was proposed for MRI reconstruction based on STA. It used a feedback to dynamically adjust the iteration step size. The feedback parameter was calculated from the total variations (TV) of two previous iterations. It can effectively improve the efficiency of iteration. Experiments over three kinds of MR images (human head, blood vessels and knee) under different sample ratios indicated that the proposed algorithm SAFISTA showed better reconstruction performance than iterative shrinkage thresholding algorithm (ISTA), fast iterative shrinkage thresholding algorithm (FISTA) and generalized thresholding iterative algorithm (GTIA) in terms of mean square error (MSE), peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Magnetic Resonance Imaging - Volume 53, November 2018, Pages 89-97
Journal: Magnetic Resonance Imaging - Volume 53, November 2018, Pages 89-97
نویسندگان
Wei Wang, Ning Cao,