کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8176941 | 1526385 | 2014 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-objective particle swarm and genetic algorithm for the optimization of the LANSCE linac operation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
ابزار دقیق
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Particle swarm optimization (PSO) and genetic algorithm (GA) are both nature-inspired population based optimization methods. Compared to GA, whose long history can trace back to 1975, PSO is a relatively new heuristic search method first proposed in 1995. Due to its fast convergence rate in single objective optimization domain, the PSO method has been extended to optimize multi-objective problems. In this paper, we will introduce the PSO method and its multi-objective extension, the MOPSO, apply it along with the MOGA (mainly the NSGA-II) to simulations of the LANSCE linac and operational set point optimizations. Our tests show that both methods can provide very similar Pareto fronts but the MOPSO converges faster.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment - Volume 741, 21 March 2014, Pages 124-129
Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment - Volume 741, 21 March 2014, Pages 124-129
نویسندگان
X. Pang, L.J. Rybarcyk,