کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8184865 | 1527690 | 2018 | 69 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The geometry of gauged linear sigma model correlation functions
ترجمه فارسی عنوان
هندسه توابع همبستگی مدل خطی سیگما
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
چکیده انگلیسی
Applying advances in exact computations of supersymmetric gauge theories, we study the structure of correlation functions in two-dimensional N=(2,2) Abelian and non-Abelian gauge theories. We determine universal relations among correlation functions, which yield differential equations governing the dependence of the gauge theory ground state on the Fayet-Iliopoulos parameters of the gauge theory. For gauge theories with a non-trivial infrared N=(2,2) superconformal fixed point, these differential equations become the Picard-Fuchs operators governing the moduli-dependent vacuum ground state in a Hilbert space interpretation. For gauge theories with geometric target spaces, a quadratic expression in the Givental I-function generates the analyzed correlators. This gives a geometric interpretation for the correlators, their relations, and the differential equations. For classes of Calabi-Yau target spaces, such as threefolds with up to two Kähler moduli and fourfolds with a single Kähler modulus, we give general and universally applicable expressions for Picard-Fuchs operators in terms of correlators. We illustrate our results with representative examples of two-dimensional N=(2,2) gauge theories.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 933, August 2018, Pages 65-133
Journal: Nuclear Physics B - Volume 933, August 2018, Pages 65-133
نویسندگان
Andreas Gerhardus, Hans Jockers, Urmi Ninad,