کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8184872 1527691 2018 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Invariant operators, orthogonal bases and correlators in general tensor models
ترجمه فارسی عنوان
اپراتورهای غیر قابل تعویض، پایگاه های متعامد و همبستگی ها در مدل های تانسور به طور کلی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی
We study invariant operators in general tensor models. We show that representation theory provides an efficient framework to count and classify invariants in tensor models of (gauge) symmetry Gd=U(N1)⊗⋯⊗U(Nd). As a continuation and completion of our earlier work, we present two natural ways of counting invariants, one for arbitrary Gd and another valid for large rank of Gd. We construct bases of invariant operators based on the counting, and compute correlators of their elements. The basis associated with finite rank of Gd diagonalizes the two-point function of the free theory. It is analogous to the restricted Schur basis used in matrix models. We show that the constructions get almost identical as we swap the Littlewood-Richardson numbers in multi-matrix models with Kronecker coefficients in general tensor models. We explore the parallelism between matrix model and tensor model in depth from the perspective of representation theory and comment on several ideas for future investigation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 932, July 2018, Pages 254-277
نویسندگان
, ,