کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8191842 1528868 2011 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kohnʼs theorem and Galilean symmetry
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک هسته ای و انرژی بالا
پیش نمایش صفحه اول مقاله
Kohnʼs theorem and Galilean symmetry
چکیده انگلیسی
The relation between the separability of a system of charged particles in a uniform magnetic field and Galilean symmetry is revisited using Duvalʼs “Bargmann framework”. If the charge-to-mass ratios of the particles are identical, ea/ma=ϵ for all particles, then the Bargmann space of the magnetic system is isometric to that of an anisotropic harmonic oscillator. Assuming that the particles interact through a potential which only depends on their relative distances, the system splits into one representing the center of mass plus a decoupled internal part, and can be mapped further into an isolated system using Niedererʼs transformation. Conversely, the manifest Galilean boost symmetry of the isolated system can be “imported” to the oscillator and to the magnetic systems, respectively, to yield the symmetry used by Gibbons and Pope to prove the separability. For vanishing interaction potential the isolated system is free and our procedure endows all our systems with a hidden Schrödinger symmetry, augmented with independent internal rotations. All these properties follow from the cohomological structure of the Galilei group, as explained by Souriauʼs “décomposition barycentrique”.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters B - Volume 702, Issues 2–3, 11 August 2011, Pages 177-180
نویسندگان
, ,