کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
819655 1469442 2007 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An artificial neural network approach to multiphase continua constitutive modeling
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
An artificial neural network approach to multiphase continua constitutive modeling
چکیده انگلیسی

Constitutive equations describe intrinsic relationships among sets of material system parameters. This study utilizes artificial neural networks in place of a traditional micromechanical approach to calculate the global (macroscopic) elastic properties of composite materials given the local (microscopic) properties and local geometry. This approach is shown to be more computationally efficient than conventional numerical micromechanical approaches. An eight sub-celled representative volume element is used for the local geometry. Multi target artificial neural networks (MTANNs) and single target artificial neural networks are studied for applicability in predicting the global properties. The best performing MTANN achieves a precision of 9%. The single target artificial neural networks (STANNs) perform best and predicts the global properties within a target error of 5.3%. The computation time is 1.8 s for all six STANNs to predict six global properties for 19,683 different microstructures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Composites Part B: Engineering - Volume 38, Issues 7–8, October–December 2007, Pages 817–823
نویسندگان
, ,