کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8203326 | 1530514 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Radial position-momentum uncertainties for the infinite circular well and Fisher entropy
ترجمه فارسی عنوان
عدم قطعیت موقعیت حرکتی برای دایره بی نهایت و انتروپی فیشر
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک و نجوم (عمومی)
چکیده انگلیسی
We show how the product of the radial position and momentum uncertainties can be obtained analytically for the infinite circular well potential. Some interesting features are found. First, the uncertainty Îr increases with the radius R and the quantum number n, the n-th root of the Bessel function. The variation of the Îr is almost independent of the quantum number n for n>4 and it will arrive to a constant for a large n, say n>4. Second, we find that the relative dispersion Îr/ãrã is independent of the radius R. Moreover, the relative dispersion increases with the quantum number n but decreases with the azimuthal quantum number m. Third, the momentum uncertainty Îp decreases with the radius R and increases with the quantum numbers m>1 and n. Fourth, the product ÎrÎpr of the position-momentum uncertainty relations is independent of the radius R and increases with the quantum numbers m and n. Finally, we present the analytical expression for the Fisher entropy. Notice that the Fisher entropy decreases with the radius R and it increases with the quantum numbers m>0 and n. Also, we find that the Cramer-Rao uncertainty relation is satisfied and it increases with the quantum numbers m>0 and n, too.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 382, Issue 26, 3 July 2018, Pages 1752-1759
Journal: Physics Letters A - Volume 382, Issue 26, 3 July 2018, Pages 1752-1759
نویسندگان
Ariadna J. Torres-Arenas, Qian Dong, Guo-Hua Sun, Shi-Hai Dong,