کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
821200 | 906747 | 2010 | 7 صفحه PDF | دانلود رایگان |

In this study, we prepared nanocomposites of multi-walled carbon nanotubes (MWCNTs) and low-energy-bandgap conjugated polymers incorporating 3,4-alkoxythiophene monomers. Poly(3,4-dihexyloxythiophene) (PDHOT) and poly(3,4-dimethoxythiophene-co-3,4-dihexyloxythiophene) [P(DMOT-co-DHOT)] have relatively low-energy-bandgaps (ca. 1.38 and 1.34 eV, respectively), determined from the onsets of absorbances in their UV–Vis spectra, because of the electron-donating effects of their alkoxy groups. MWCNTs have poor solubility in common organic solvents; after surface modification with alkyl side chains using the Tour reaction, however, the p-hexylaniline modified MWCNT derivative (MWCNT-HA) was readily dispersed in CHCl3 and could be mixed with the low bandgap polymers. Scanning electron microscopy images revealed that MWCNT-HA was dispersed well in each polythiophene derivative; only a few MWCNT-HA bundles could be observed at a high MWCNT-HA content (≧20 wt.%). The electrical conductivities of the MWCNTs/PDHOT composites were dependent on their MWCNT content, reaching 16 S/cm at 30 wt.% MWCNT-HA. We suspect that the two hexyloxy chains of PDHOT enhanced its solubility and allowed it to wrap around the surfaces of the MWCNTs more readily.
Journal: Composites Science and Technology - Volume 70, Issue 8, August 2010, Pages 1242–1248