کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
821331 | 906755 | 2010 | 6 صفحه PDF | دانلود رایگان |

The presence of stress concentrations at holes and notches is known to reduce the strength of composite materials. Due to complexity of the damage processes at a stress raiser in a composite, different modeling approaches have been developed, ranging from empirical point and average stress criteria to involved damage mechanics or cohesive zone-based models of failure. Finite fracture mechanics approach with a coupled stress and energy failure criterion, recently developed and applied mainly to cracking in homogeneous isotropic materials, allows predicting the appearance and propagation of a crack using material strength and toughness characteristics obtained from independent tests. The present study concerns application of the finite fracture mechanics to the analysis of cracking at a notch in a UD glass/epoxy composite subjected to tensile off-axis loading. Based on UD composite strength and intralaminar toughness characterized by separate tests, finite fracture mechanics analysis provided conservative estimates of crack onset stress at the notch.
Journal: Composites Science and Technology - Volume 70, Issue 9, 15 September 2010, Pages 1380–1385