کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
822175 | 1469569 | 2005 | 10 صفحه PDF | دانلود رایگان |

Aircraft grade epoxy–clay nanocomposites based on tetraglycidyl-4, 4′-diaminodiphenylmethane (TGDDM) cured with diaminodiphenyl sulphone (DDS) were synthesized. Nanoclay was dispersed in both acetone and an acetone epoxy solution with a high pressure mixing (HPM) method to form pastes. The basal spacing of the nanoclay in these pastes was increased as observed from X-ray diffraction (XRD) data. Transmission electron microscopy (TEM) images show that the agglomerates of nanoclay were broken down to form small particles consisting of several clay platelets. Fracture toughness of this epoxy system has been greatly enhanced with the addition of nanoclay. With the addition of only 4.5 phr of clay, the strain energy release rate of the epoxy is increased 5.8 times from the original value. Scanning electron microscope (SEM) was used to examine the characteristics of the fracture surfaces from the different materials. There is also significant reduction in the diffusivity and the maximum water uptake of the epoxy resin with the addition of the nanoclay.
Journal: Composites Science and Technology - Volume 65, Issues 15–16, December 2005, Pages 2364–2373