کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8253720 | 1533615 | 2018 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks
ترجمه فارسی عنوان
یک اندازه گیری مرکزی جدید بر اساس اثرات منفی و مثبت ضریب خوشه بندی برای شناسایی اسپردرهای تاثیرگذار در شبکه های پیچیده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شبکه پیچیده پخش گره، مرکزیت نیمه محلی، ضریب خوشه بندی،
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک آماری و غیرخطی
چکیده انگلیسی
Identifying the most influential spreaders with the aim of reaching a maximum spreading ability has been a challenging and crucial topic so far. Many centrality measures have been proposed to identify the importance of nodes in spreader detection process. Centrality measures are used to rank the spreading power of nodes. These centralities belong to either local, semi-local, or global category. Local centralities have accuracy problem and global measures need a higher time complexity that are inefficient for large-scale networks. In contrast, semi-local measures are popular methods that have high accuracy and near-linear time complexity. In this paper, we have proposed a new semi-local and free-parameter centrality measure by applying the natural characteristics of complex networks. The proposed centrality can assign higher ranks for structural holes as better spreaders in the network. It uses the positive effects of second-level neighbors' clustering coefficient and negative effects of node's clustering coefficient in defining the importance of nodes. Therefore, the proposed centrality avoids selection of spreaders that are too close to one another. We compare the proposed method with different centrality measures based on Susceptible-Infected-Recovered (SIR) and Susceptible-Infected (SI) models on both artificial and real-world networks. Experiments on both artificial and real networks show that our method has its competitive advantages over the other compared centralities.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 110, May 2018, Pages 41-54
Journal: Chaos, Solitons & Fractals - Volume 110, May 2018, Pages 41-54
نویسندگان
Kamal Berahmand, Asgarali Bouyer, Negin Samadi,