کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8254286 | 1533620 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Recently a new fractional differentiation was introduced to get rid of the singularity in the Riemann-Liouville and Caputo fractional derivative. The new fractional derivative has then generate a new class of ordinary differential equations. These class of fractional ordinary differential equations cannot be solved using conventional Adams-Bashforth numerical scheme, thus, in this paper a new three-step fractional Adams-Bashforth scheme with the Caputo-Fabrizio derivative is formulated for the solution linear and nonlinear fractional differential equations. Stability analysis result shows that the proposed scheme is conditionally stable. Applicability and suitability of the scheme is justified when applied to solve some novel chaotic systems with fractional order αâ¯ââ¯(0, 1).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 105, December 2017, Pages 111-119
Journal: Chaos, Solitons & Fractals - Volume 105, December 2017, Pages 111-119
نویسندگان
Kolade M. Owolabi, Abdon Atangana,