کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8254342 | 1533620 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Simulation analysis of multifractal detrended methods based on the ARFIMA process
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The two-component autoregressive fractionally integrated moving average (ARFIMA) process and mix-correlated ARFIMA(MC-ARFIMA) are applied in this paper to generate artificial sequence with Hxyâ¯=â¯1/2(Hxâ¯+â¯Hy) and Hxy < 1/2(Hxâ¯+â¯Hy) respectively and simulate the results of multifractal detrended cross-correlation analysis (MFXDFA), multifractal detrending moving average cross-correlation analysis (MFXDMA), MFDCCA based on maximum overlap wavelet transform (MFDCCA-MODWT), and multifractal detrended partial cross-correlation analysis(MF-DPXA). The advantages and disadvantages of MFXDFA, MFXDMA(θâ¯=â¯0,0.5,1), and MFDCCA-MODWT are compared to the long-memory of sequences. In the case of Hxy < 1/2(Hxâ¯+â¯Hy), these three methods keep around the theoretical value with small fluctuations in a variety of sequence lengths. In the case of Hxyâ¯=â¯1/2(Hxâ¯+â¯Hy), the curves are significantly stable and are slightly smaller than the theoretical value. The precision of these estimators may be influenced by the relationship between Hxy and 1/2(Hxâ¯+â¯Hy). Multifractal features is detected and the result shows that MFXDMA-0 and MFXDMA-1 is optimal to detect the multifractality. An interesting finding is that MFDCCA-MODWOT performs best in both case of Hxyâ¯=â¯1/2(Hxâ¯+â¯Hy) and Hxy < 1/2(Hxâ¯+â¯Hy), but it performs worst to detect the multifractality. When Gaussian noise is added to the sequences with different long-memory levels, MFDPXA can eliminate the noise interference compared with MFXDFA, thereby verifying the effectiveness of this method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 105, December 2017, Pages 235-243
Journal: Chaos, Solitons & Fractals - Volume 105, December 2017, Pages 235-243
نویسندگان
Guangxi Cao, Yingying Shi,