کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8254941 1533649 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Helicalised fractals
ترجمه فارسی عنوان
فراکتال های حلقوی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
چکیده انگلیسی
We formulate the helicaliser, which replaces a given smooth curve by another curve that winds around it. In our analysis, we relate this formulation to the geometrical properties of the self-similar circular fractal (the discrete version of the curved helical fractal). Iterative applications of the helicaliser to a given curve yields a set of helicalisations, with the infinitely helicalised object being a fractal. We derive the Hausdorff dimension for the infinitely helicalised straight line and circle, showing that it takes the form of the self-similar dimension for a self-similar fractal, with lower bound of 1. Upper bounds to the Hausdorff dimension as functions of ω have been determined for the linear helical fractal, curved helical fractal and circular fractal, based on the no-self-intersection constraint. For large number of windings ω→∞, the upper bounds all have the limit of 2. This would suggest that carrying out a topological analysis on the structure of chromosomes by modelling it as a two-dimensional surface may be beneficial towards further understanding on the dynamics of DNA packaging.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 75, June 2015, Pages 191-203
نویسندگان
, ,